Derivation of the distribution function for the overall scores based on two groups

The overall scores based on two sets of scores, one for each group is computed as follows

$$
S=s^{*} \times \min \left(\left|s^{1}\right|,\left|s^{2}\right|\right)
$$

where s^{*} is the sign of s^{1} if $\left|s^{1}\right|<\left|s^{2}\right|$ and is the sign of s^{2} otherwise.
We assume that s^{1} and s^{2} are independent and each has a standard normal distribution. Then

For $x \geq 0$,

$$
\begin{aligned}
P(S>x) & =\frac{1}{2} P\left(\left|s^{1}\right|>x,\left|s^{2}\right|>x\right) \\
& =2 P\left(s^{1}>x\right) P\left(s^{2}>x\right) \\
& =2(1-\Phi(x))^{2},
\end{aligned}
$$

where $\Phi(x)$ is the cumulative distribution function of standard normal distribution $N(0,1)$.

The distribution of S is

$$
F_{S}(x)= \begin{cases}1-2(1-\Phi(x))^{2}, & \text { if } x \geq 0 \\ 2(\Phi(x))^{2}, & \text { if } x<0\end{cases}
$$

